北大SPH・統計的因果推論と臨床疫学③

## 因果DAG

北海道大学 医学統計学 横田 勲

内的妥当性

- ▶追跡の妥当性 Follow-Up Validity
  - ▶対象者の選択的な脱落はないか?
- ▶測定の妥当性 Measurement Validity
  - ▶データの測定誤差(観察の不完全性)は 大きくないか?
- ▶比較の妥当性 Comparison Validity
  - ▶ そもそも比較群はよく似ている集団か?
- ▶解析の妥当性 Specification Validity
  - ▶統計モデルの現実からの乖離は大きくないか?

妥当性

▶内的妥当性 internal validity

- ▶研究対象集団で調べたいものが 調べられているか?
- ▶外的妥当性 external validity
  - ▶内的妥当性を満たす研究結果を、 研究対象集団以上の集団に一般化できるか?
  - ▶一般化可能性 generalizability
  - ▶代表性 representativeness

妥当性をおびやかすバイアス

1

- ▶選択バイアス selection bias
- ▶情報バイアス information bias
- ▶交絡 confounding

3

#### 因果推論に必要なもの

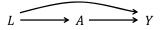
▶因果ネットワークに関する 専門家の意見 と 検証不能な仮定

- ▶ 因果ダイアグラム causal diagram
  - ▶因果関係を仮定、図示化
  - ▶生じうるバイアスを整理
    - ▶交絡バイアス、選択バイアス、情報バイアス
  - ▶因果効果の分離
    - ▶直接効果・間接効果

有向非循環グラフ

6

- ▶ Directed Acyclic Graphs; DAGs
- ▶ Directed 有向
  - ▶ノード node 間の矢線 arrow で順序性をいう
  - **▶***LがAの*原因
- ▶Acyclic 非循環
  - ▶自分自身の原因となることがない



#### DAGで出てくる用語

因果DAG

8

- ▶ ノード、節点 node、点 vertex
  - ▶各変数をノードにおく
- ▶矢線 arrow、辺 edge
  - ▶一般に、辺は方向によらず使える言葉
- ▶パス、経路、道 path
  - ▶あるノードから異なるノードまでの行き方
- ▶ 親 parent
- ▶祖先 ancestor:親の親、その親・・を含める
- ▶子 child

7

子 Child ▶子孫 descendant : 子の子、その子・・を含める

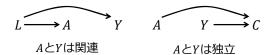
- ▶以下のようなDAG
  - ▶ノード間を直接結ぶ矢線がない場合、 直接(因果)効果がない
    - ▶あるかもしれない、なら矢線を示しておく
  - ▶ある変数達に共通する原因は、 <u>観察できないとしても</u>、同じグラフ上に示す
  - ▶いかなる変数もその子孫に対し原因となる
- ▶因果DAGは背景にある反事実モデルを表現

8

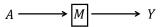
## 周辺独立 marginally independent

▶因果DAGにおける2変数間の特徴

- ▶以下のいずれかを満たせば"(周辺)関連"
  - ▶一方がもう一方の原因
  - ▶共通の原因(親)をもつ
- ▶関連しない場合、(周辺)独立



条件付き独立 conditional independence 10



- ▶ AとYに周辺関連がある
  - ▶ Mは中間変数、媒介変数 mediator
- ▶ Mの水準を限定したら?
  - ▶条件付ける conditional on
  - ▶□で囲う
- ▶ Mで条件付けることで、 関連のあったパス $A \to M \to Y$ をブロック
  - ▶条件付き独立にした

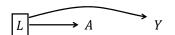
9 10

#### "条件付け"

- ▶状況を限定した上での推測
- $\triangleright E(Y|A=a)$ 
  - ▶Aの水準がaである場合のYの期待値
- ▶限定、マッチング、層別解析・標準化、 回帰モデル等が条件付けのツール

#### 共通原因をブロック

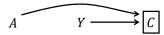
. .



- ► AとYに周辺関連がある
  - ▶Lが共通原因
- ▶ Lを条件付け
- ▶関連のあったパス $A \leftarrow L \rightarrow Y$ をブロック
  - ▶条件付き独立にした

11 12

#### 合流点 collider をブロック



- ▶AとYは周辺独立
  - $\triangleright A \rightarrow C \leftarrow Y$ というパスは関連を生まない
  - ▶ *C*が合流点 collider
- ▶ Cを条件付け
- $\triangleright$   $A \rightarrow C \leftarrow Y \ge N \supset$ ブロックされていたパスをオープンに
  - ▶関連が生じる

13

14

## blockedかopenか

- ▶パスがblockedな状況は以下のいずれか
  - ▶非合流点で条件付け
    - ▶中間変数や共通原因で条件付け
  - ▶合流点とその子孫は条件付けない
- ▶ blockedでないパスがopen path

有向分離 d-separation

合流点の子孫をブロック

AとYは原因となっていた

 $A \rightarrow C_1 \leftarrow Y \times A - \mathcal{I} \times C$ 

 $ightharpoonup C_2$ で条件つけても、

 $A \xrightarrow{\qquad} C_1 \xrightarrow{\qquad} C_2$ 

▶合流点のみならず、その子孫についても

▶直接の合流点C1で条件付けることと同様

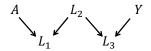
16

14

- ▶次の条件のいずれかを満たすとき、 {A,Y}と排反な変数集合Sが A - Y間を有向分離する
  - ▶ A Y間のすべてのパスにおける合流点で、 その合流点と子孫がSに含まれないものがある
  - $\triangleright A = Y$ 間のすべてのパスに非合流点で、Sに含まれるものがある
- ▶ Sで条件付ければ、
  - A Y間をつなぐパスをすべてblocked
  - ▶open pathが含まれる場合をd-connected

15 16

#### 練習① 有向分離するSは?

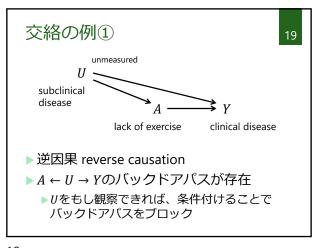


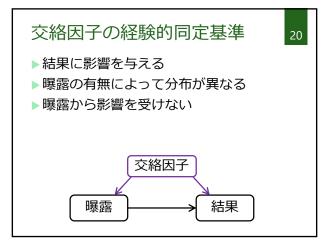
- (空集合) 1) {*φ*}
- $\{L_2\}$
- 2)  $\{L_1\}$
- $\{L_2, L_3\}$
- 3)  $\{L_1, L_2\}$
- 7)  $\{L_3\}$
- 4)  $\{L_1, L_3\}$
- 8)  $\{L_1, L_2, L_3\}$

18 17

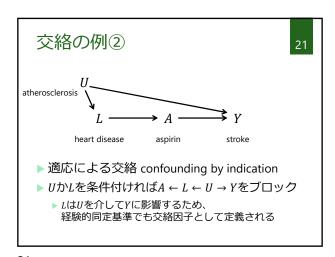
#### バックドア基準 back-door criterion

- ► AはYの非子孫
- ▶次の2条件を満たす頂点集合Sは A-Yについてバックドア基準を満たす
  - ▶ AからSの任意の要素へ有向道がない
  - ▶ A から出る矢線をすべて除いたグラフにおいて、 SがAとYを有向分離する
- ▶ S, A, Yが観察されていれば、 AからYへの因果効果は識別可能



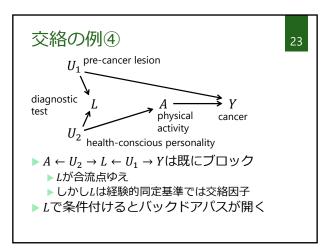


19 20



交絡の例③  $U \longrightarrow L$  smoking social factors  $A \longrightarrow Y$  exercise death U かL を条件付ければ $A \leftarrow U \rightarrow L \rightarrow Y$  をブロック L はU を介してAに影響するため、経験的同定基準でも交絡因子として定義される

21 22



交絡が生じるかをDAGで

▶経験的同定基準の修正も考えられている

▶ Greenland S, Pearl J, Robins JM. Epidemiology, 1999.

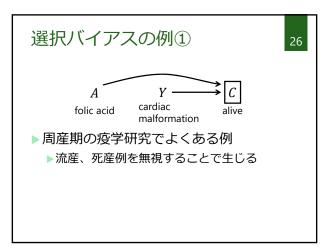
▶バックドア基準で条件付けすべきか
考えるほうがわかりやすい

23 24

# 選択バイアス

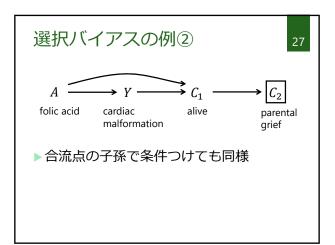
25

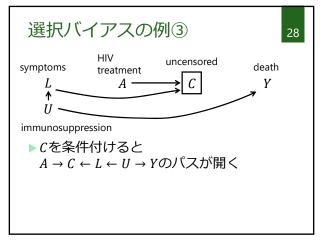
- ▶研究に参加した人と参加しなかった人では 曝露ー疾病間の関係がことなる
  - ▶源泉集団と対象集団がことなる
  - ▶古典的定義
- ▶ Colliderもしくはその子孫を 条件付けることによって生じるバイアス
  - ▶因果DAGを用いた定義



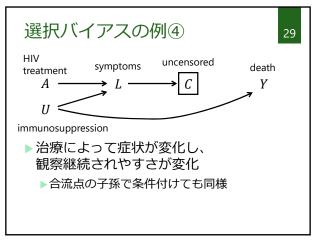
25

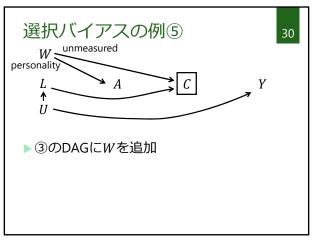
26

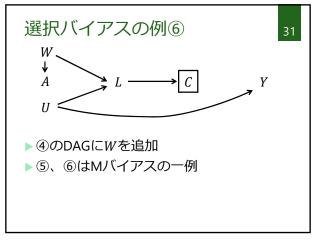


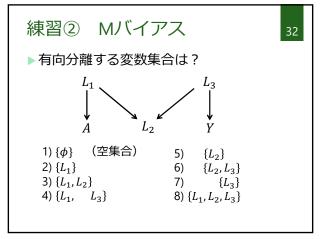


27 28



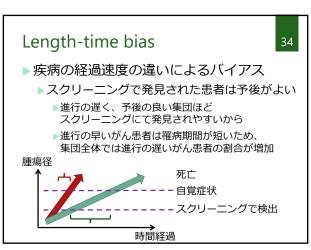






31 32





33 34

## 練習③ DAGを描いてみよう

▶がんのスクリーニングを行った際に 生じうるlength-time biasを表現する 因果DAGを描け 選択バイアスの対処

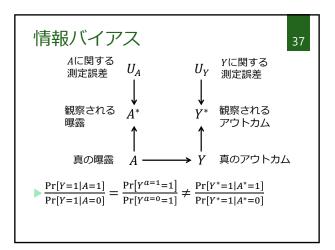
Fザインでの制御

Biased samplingへの対処法を利用

IPW解析

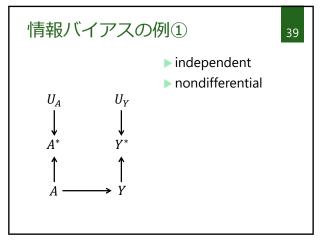
選択される確率の逆数で重みつけ

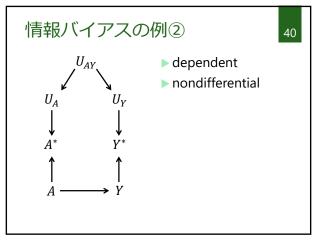
標準化



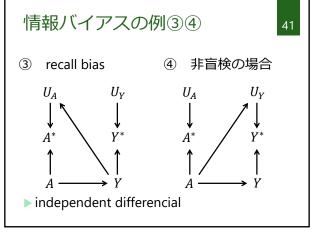


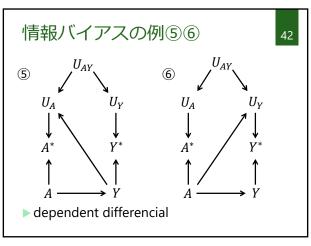
37 38





39 40





## independent, nondifferential

- ▶曝露が2値である場合、 A - Yの関連に比べ、
  - $A^* Y^*$ の関連は帰無に向かうバイアス
- ▶補正方法も検討されてきた
  - ▶dependentやdifferentialな場合は難しい
  - ▶むしろ、デザインでの制御がよいだろう

#### Intention To Treat (ITT) の原則

44

- ▶治療方針による効果は、 実際に受けた治療ではなく、 被験者を治療しようとした意図(ITT)に 基づくことにより最もよく評価できる
  - ▶ICH-E9 ガイドライン 臨床試験のための統計的原則

43 44

#### ITTの原則の解釈①

46

- ▶理想的環境における作用を 評価するのではなく、 治療遵守の程度なども含めた 実践的な技術を評価する
  - ▶ pragmatic な臨床試験
    - ▶対義語: explanatory な臨床試験

#### ITTの原則の解釈②

- ▶実際に受けた治療でなく、 割付られた治療に基づく治療群の分類
  - ▶偏りのない独立な測定誤差なら?
  - ▶そうでない測定誤差なら?
- ▶一般的に、保守的な方向のバイアス
  - ▶ 「治療効果がない」方向、conservative
  - ▶治療効果を過大にいうことはないので、 効かない治療が世に出ないという点でマシ

45 46

### ITT解析の例

45

- ▶100名ずつ試験群と対照群に割付
  - ▶本来は試験治療で30%の患者が死亡
  - ▶対照治療で60%の患者が死亡

| 割付群 | 死亡 | 治癒 | 合計  |
|-----|----|----|-----|
| 試験群 | 30 | 70 | 100 |
| 対照群 | 60 | 40 | 100 |

▶ リスク差:30%-60%=-30%

#### ITT解析① nondifferentialな場合

48

- ▶各群20名ずつ反対の治療を受けた
- ▶割付通りの治療を受けた人々

| 割付群 | 死亡 | 治癒 | 合計 |
|-----|----|----|----|
| 試験群 | 24 | 56 | 80 |
| 対照群 | 48 | 32 | 80 |

▶反対の治療を受けた人々

| 割付群 | 治癒 | 死亡 | 合計 |
|-----|----|----|----|
| 試験群 | 12 | 8  | 20 |
| 対照群 | 6  | 14 | 20 |

#### ITT解析① nondifferentialな場合

▶得られる研究結果は以下の通り

| 割付群 | 死亡 | 治癒 | 合計  |
|-----|----|----|-----|
| 試験群 | 36 | 64 | 100 |
| 対照群 | 54 | 46 | 100 |

▶ リスク差:36%-54%=-18%

#### 練習④ ITT解析

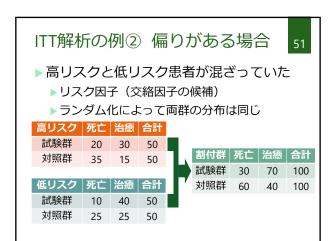
50

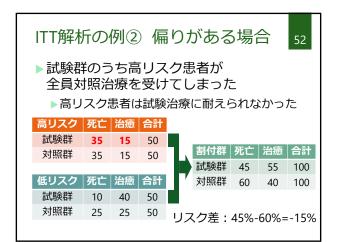
- ▶ITT解析が以下の状況において、 保守的なバイアスを招くことを証明せよ
  - ▶2値アウトカム、2群比較
  - ▶Nondifferentialな場合
    - ▶割付群の両群で同じ割合だけ 反対の治療を行った (この割合をmとおいてみよう)
- トヒント

49

▶各群の死亡割合をp<sub>1</sub>, p<sub>2</sub>とおいてみよう

49 50





51 52

#### なぜ効果がなくなる方向なのか

53

- ▶多くの状況では、測定誤差に偏りがある 場合でも効果がない方向に
  - ▶反対治療を受けた場合の結果になるならば、 その集団での治療効果はゼロ (リスク差ならば0、リスク比ならば1)
- ▶多くの状況では、P値は1に近づく
  - ▶有意差がつかなくなる、保守的な結果
  - ▶規制当局からすれば、 のぞましい方向のバイアス

#### 因果DAGを使う利点

54

- ▶因果効果を識別可能とするには
  - ▶どのような交絡を制御したか
  - ▶Colliderを条件付けることで、 むしろバイアスを生んでいないか
- ▶因果仮説の何を検討しているのか
- ▶疫学(観察研究)データを測定、 解析する計画を立てる上で便利なツール

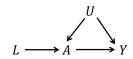
53 54

#### 曝露以前に観察された変数なら調整

▶ Rosenbaum. Observational Study. 2002.

- ▶因果DAGにより、不十分な調整とわかる
  - ▶Eg. Mバイアス、操作変数





 $L_1$ ,  $L_3$ が観察できない場合

操作変数L

黒木学. 構造的因果モデルの基礎. 2017. 共立出版より一部改変

### 未測定の変数Uを含めた構造

- ▶Uと観察変数との関係を特定しづらい
  - ▶ 因果DAGを何通りか作り、それぞれの場合の 適切な解析と結果の解釈を考えよう

55

56

### まとめ

7

- ▶選択バイアス、情報バイアス、交絡
  - ▶因果DAGを用いた整理
- ▶因果効果を識別可能とするために 必要な有向分離、バックドア基準

## 教科書

58

56

- ▶ 甘利俊一ら. 多変量解析の展開. 2002. 岩波書店.
  - ▶ 佐藤俊哉・松山裕 著 第Ⅲ部 疫学・臨床研究における因果推論
- ▶ 黒木学. 構造的因果モデルの基礎. 2017. 共立出版
- Hernán MA, Robins JM (2020). Causal Inference: What if. Chapman & Hall/CRC.

57