2019/12/9 北大・医理工統計学⑦-2

統計モデルの作り方

北海道大学 医学統計学

横田 勲

1

2

医学研究での目的

- ▶ "X" は "疾病Y" と 関連 がある
 - ▶X:健康状態マーカーや 疾病Yを引き起こす疾患など

- ▶ "X" は "疾病Y" の 原因 となる
- ▶ "X" は "疾病Y" を 予測 する

より目的を明確に

3

因果と予測

今回の内容

▶性能評価

到達目標

▶回帰モデルにおける変数選択

▶感度・特異度、ROC曲線

▶ROC曲線の意味を知る

- 4
- ▶回帰分析から、X-Y間の「関連」を検討

▶因果モデルと予測モデルの違いを知る

- ▶ Xが原因となり、Yという結果が導かれる
 - ▶回帰モデルは因果モデル (`do' model)
 - ▶交絡因子は制御すべきもの
- ▶ Xの値を与えて、Yという結果を当てる
 - ▶回帰モデルは予測モデル (`see' model)
 - ▶予測精度を高めるためにXを選ぶ

Allison PD. 1998(Book). vanHouwelingen JC. The President's speech in ISCB34.

4

前立腺がんとPSA

- 6
- ▶前立腺がんの発見・病勢と強い関連▶スクリーニングにも用いられる
- ▶がんの細胞壁が壊れやすいため、 がんのvolumeに応じてPSAが血液中に漏出

前立腺がんのリスク因子を検討

7

- ▶明らかなリスク因子は、年齢、家族歴
- ▶他にもリスク因子はあるに違いない!
 - ▶例えば、飲酒の影響を調べてみる
 - ▶因果関係を知りたい

6

 交絡の影響を解析で除去

 D以下の条件を満たすことで、 飲酒と前立腺がんの関係を歪めてしまう

 申齢が高いほど前立腺がんは増える

 申齢と飲酒には関係がある

 飲酒をすれば年齢が増えるわけではない

 年齢

 飲酒

 前立腺がん

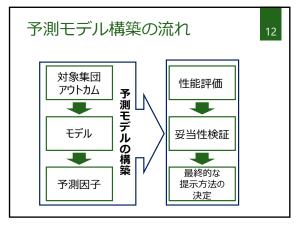
 の酒

前立腺がんの予測をしたい
 ▶ 前立腺がん発生を精度良く当てたい
 ▶ どのような因子を用いてもよい
 ▶ 年齢のようなリスク因子
 ▶ 前立腺がんの"結果"であるPSA

年齢
(数酒 → 前立腺がん → PSA

10

14



DLBCLの新規予後予測モデル

14

- ▶びまん性大細胞型B細胞リンパ腫
- ▶全生存予後を予測したい
- ▶臨床で簡単に利用できるスコアを作りたい
 - ▶年齢、血清LDH、Ann Arborステージ、 ECOG-Performance Status、血清CRP、 低アルブミン血症、

節外(骨髄、骨、皮膚、肺/胸膜)病変

▶変数選択により、予測に用いる因子を決定

ハザード

8

12

15

▶ハザード関数λ(t)

$$\lambda(t) = \lim_{\Delta t \to 0} \frac{\Pr(t \le T < t + \Delta t | T \ge t)}{\Delta t}$$

▶ tまではat riskであるものの($T \ge t$)、 その直後 $t + \Delta t$ までにイベント発生する確率 Cox比例ハザードモデルを利用

B 1972

- トハザード $\lambda(t)$ に対する回帰分析 $\lambda(t) = \lambda_0(t) \exp(x^{\mathsf{T}}\beta)$
 - ight
 ight
 ight
 weightarrow パラメータは $\lambda_0(t)$ と β
- ▶セミパラメトリックモデル
 - ▶尤度関数のにβに関する部分だけ最大化
 - $\lambda_0(t)$ は $\hat{\beta}$ を差し込んでノンパラ推定
 - ▶計数過程により漸近性質が正当化

15 16

変数選択

- ▶回帰分析において、複数の因子候補から、 関連の強そうなものだけに絞る方法
 - ▶予測モデルをシンプルにするためには便利
- ▶予測モデルを作るため
 - ▶少ない変数で当たりのよいモデルを
 - 特別な測定を要する変数で作ったモデルは 使われづらい
- ▶因果関係を調べるためには使わない
 - ▶交絡調整が目的ゆえ、 利用可能なすべての変数を用いる

ランダム分割

18

- ▶465例のデータ
 - ▶323例(70%)をトレーニングコホート
 - ▶142例(30%)をバリデーションコホート
- ▶トレーニングコホートで予測モデルを構築
- ▶バリデーションコホートで 他の予測モデルとの性能を比較
 - ▶モデル構築に用いていないデータであるため、 公平な性能比較を行えるだろう

17

18

最終モデル

▶ 変数減少ステップワイズ法を利用

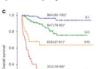
因子	ハザード比	95%信頼区間	回帰係数	スコア
$LDH \le 1 \times ULN$	1	-	0	
$LDH > 1 \times ULN, \leq 3 \times ULN$	2.47	1.20-5.08	0.91	1点
LDH > 3×ULN	3.68	1.57-8.66	1.31	2点
ECOG-PS ≥ 2	2.50	1.40-4.45	0.91	1点
ALB < 3.5mg/dL	2.52	1.36-4.69	0.93	1点
特定部位への節外病変	1.71	1.03-2.84	0.54	1点

▶合計点を基にさらにリスク分類

合計点	点0	1-2点	3点	4-5点
リスク分類	低	低中間	高中間	高

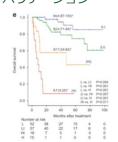
各コホートでのリスク分類

20



Lvs.U P-0.001 Uvs.H P-0.003 Lvs.H P-0.001 Uvs.H P-0.001 Lvs.H P-0.001 Hvs.H P-0.010

バリデーション



19

20

予測性能指標による評価

21

- ▶予後の悪い対象者を特定するための 予測モデルがどれだけ有用かを知りたい
- ▶他の予測モデルと比較したい
- ▶予測モデルを構築する上で、 overfittingを避けたい
 - ▶ノイズまでモデルをあてはめてしまい、 将来の対象者への予測性能が悪くなること

ところで「予測性能がよい」とはどういうこと?

モデルのよさ、精度の測り方

22

- ▶ モデルのあてはまり
 - ▶決定係数R²
 - ▶尤度とAIC
- ▶予測精度、予測結果のよさ
 - ▶平均二乗誤差、Brierスコア
 - ▶ ROC曲線、c 統計量

21

22

決定係数 R^2

23

残差平方和 モデルで説明した平方和 $R^2 = 1 - \frac{(y_i - \hat{y}_i)^2}{(y_i - \bar{y})^2} = \frac{(\hat{y}_i - \bar{y})^2}{(y_i - \bar{y})^2}$ 全体の平方和

- データの持つ全ばらつきのうち、 モデルで説明した割合
 - ▶単回帰の場合、相関係数の2乗に一致

確率(密度)関数と尤度

24

- ▶データは確率変数の実現値
 - 確率分布(パラメータβを持つモデル)を 仮定すれば、当該データが得られる確からしさを定義
- ▶ 尤度 *L*(**β**; *x*)
 - $\triangleright f(x; \beta)$ を β の関数としてみたもの

23

24

最尤法 maximum likelihood method

- ▶ 尤度が最大になるようなパラメータθを 推定値とみなす手法
 - ▶当該データが得られる確からしさが最大ゆえ
- ▶例:一般線形モデル
 - ▶誤差に正規分布を仮定すれば、 最尤推定値と最小二乗法による推定値が一致
- ▶例:一般化線形モデル
 - ▶たいていの場合、 最尤推定量は統計的によい性質をもつ

尤度によるあてはまりの評価

26

- ▶連続量アウトカム以外では尤度で考える
 - ▶大きいほどデータへのあてはまりがよい
 - ▶誤差に正規分布を仮定した場合、 幸いにも、誤差平方和が小さくなるほど 尤度は大きくなる関係

25

26

27

モデルの複雑さとoverfitting

- ▶モデルを複雑にすると より細かな違いまで捉えられる
 - ▶関数形を高次にする
 - ▶説明変数を増やす
 - ▶それが無意味な説明変数であっても!
- ▶無意味な説明変数をモデル化すると、 他のデータへのあてはまりが悪くなる
 - ▶モデルを活用する際に使いづらい
 - ▶Overfitting (過適合) という

Akaike's Information Criterion; AIC

28

- $-2 \log L(\boldsymbol{\beta}; x) + 2K$
 - $\triangleright K: \beta$ のパラメータ数
- ▶AICが最小となるモデルがよいモデル
 - ▶パラメータを増やすことへのペナルティを 与えた指標
 - ▶自由度調整済み決定係数も同様

27

古典的な変数選択法

29

▶基準に至るまで以下の操作を繰り返す

- > 変数増加法
 - ▶変数候補から最もp値の小さなものを加える
- ▶変数減少法
 - ▶変数候補をすべて含めたモデルから 最もp値の大きな変数を除く
- ステップワイズ法
 - ▶変数候補から最もp値の小さなものを加え、 モデルから最もp値の大きな変数を除く

他の変数選択法

30

▶ p値の代わりに用いる基準

- ► AIC
- ▶平均二乗誤差、Brierスコア
- ▶ c-index
- **.** . .
- ▶総当たり法
 - ▶変数の組合せ全パターン調べる

29

30

平均二乗誤差 Mean Squared Error 31

- $\sum_{n=1}^{\infty} (\hat{y}_i y_i)^2$
 - ▶予測値と実測値の差を評価
 - ▶平方根をとって、Root MSE; RMSE

Brier スコア

- ▶イベント有無と生存確率のズレ
 - ▶生存時間アウトカムの場合、 ある時点tでのイベント有無と確率のズレ
- ▶ Brierスコア
 - $I(y = 1) \hat{y}^2$
 - $| \{I(T > t) \hat{S}(t|X)\}^2$
 - ▶*I*(·):かっこ内が真のときに1、それ以外は0
 - ▶ Ŝ(·): 生存関数の予測値

31

32

平均Brierスコアの数値例

33

- ▶2人死亡、2人生存という仮想例
 - ▶無情報モデル ID 生存/死亡 予測確率 Brierフコア

		3 ///3/12	511017127	
1	死亡	0.5	$(1-0.5)^2 = 0.25$	
2	死亡	0.5	$(1-0.5)^2 = 0.25$	平均Brierスコア
3	生存	0.5	$(0-0.5)^2=0.25$	0.25
4	生存	0.5	$(0-0.5)^2=0.25$	
予	則モデル			

7 7	測モナル			
ID	生存/死亡	予測確率	Brierスコア	
1	死亡	0.9	$(1-0.9)^2 = 0.01$	
2	死亡	0.6	$(1-0.6)^2 = 0.16$	平均I
3	生存	0.3	$(0-0.3)^2=0.09$	
4	生存	0.2	$(0 - 0.2)^2 = 0.04$	

]Brierスコア 0.075

相対Brierスコア減少

34

- ▶期待Brierスコアのとりうる範囲は0から0.25
 - ▶しかも0に近いほど「予測性能がよい」
 - ▶集団全体の生存確率によって、上限が変化
- ▶無情報モデルに対する、予測モデルでの 期待Brierスコアを小さくした割合
 - ▶0から1をとり、1に近いほど「予測性能がよい」

Brier 無情報モデル - Brier 予測モデル Brier_{無情報モデ}ル

33

36

打ち切りを含むデータでの推定

▶対象者はいずれか3パターン

1. $I(\widetilde{T}_i > t)$

(tでイベント未発生)

2. $I(\tilde{T}_i \leq t)$ かつ $\delta_i = 1$ (tでイベント発生)

3. $I(\widetilde{T}_i \leq t)$ かつ $\delta_i = 0$ (tでの状態不明)

IPCW法の利用 ト時点tにて打ち切りがない確率 G(t)▶例えばKaplan-Meier法で推定

▶パターン3のBrierスコアが計算不能

▶パターン1,2のBrierスコアを 打ち切られない確率の逆数で膨らませる

$$\frac{1}{n} \Biggl[\sum_i \frac{1}{\hat{G}(t)} \Bigl\{ 0 - \hat{S}(t|M_i) \Bigr\}^2 + \sum_i \frac{1}{\hat{G}(\tilde{t}_i)} \Bigl\{ 1 - \hat{S}(t|M_i) \Bigr\}^2 \Biggr]$$
 全員 パターン1は パターン2は 吾イベント時点 \tilde{t}_i の 打ち切りなし確率 打ち切りなし確率

35

37

36

感度と特異度

	評価値		
至適基準	陽性	陰性	
陽性	а	b	
陰性	С	d	

▶ 感度: $\frac{a}{a+b}$

▶本当に陽性であるものを陽性といえたか

▶特異度: $\frac{d}{c+d}$

▶本当に陰性であるものを陰性といえたか

陽性的中度、陰性的中度との違い

40

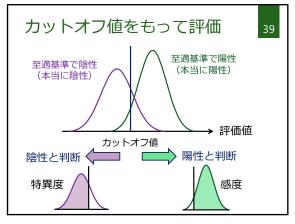
	評価値		
至適基準	陽性	陰性	
陽性	а	b	
陰性	С	d	

▶陽性的中度: $\frac{a}{a+c}$ 、陰性的中度: $\frac{d}{b+d}$

▶評価した結果が本当はどうであったか?

▶真の陽性、陰性者の分布によって 変わってしまう指標

38

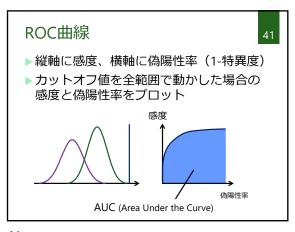


感度と特異度はトレードオフ

至適基準で陽性 至適基準で陰性 (本当に陽性) (本当に陰性) 評価値 カットオフ値

▶感度を上げれば、特異度は下がる

▶特異度を上げれば、感度は下がる



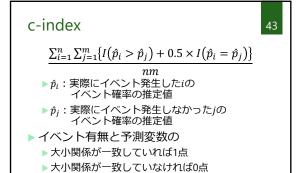
(ROC-)AUC

42

- ▶ ROC曲線の要約指標
 - ▶判別能力を表す指標として解釈
- ▶ AUC自体はモデルに依らずに計算される
 - ▶ AUC=0.5であれば、no discriminative ability
 - ▶AUCが1に近づくほど、判別能力がよい
 - ▶絶対値的な解釈は困難
- ▶ c (concordance) indexとも呼ばれる

41

42



▶値が等しければ0.5点(引き分け)

c-indexの数値例①

44

▶死亡例の予測確率: A:0.9, B:0.7, C:0.4▶生存例の予測確率: D:0.6, E:0.3, F:0.1

▶総当たり表

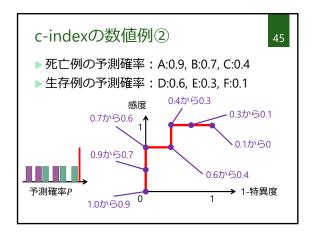
			生存例	
		0.6	0.3	0.1
	0.4	×	0	0
死亡例	0.7	0	\circ	0
	0.9	0	0	0
		0 -	75h	- Th

c-indexは 8/9=0.89

○:一致 ×:不一致

43

44

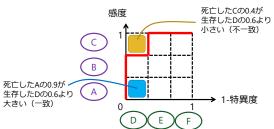


c-indexの数値例③

46

▶死亡例の予測確率: A:0.9, B:0.7, C:0.4

▶生存例の予測確率: D:0.6, E:0.3, F:0.1



45

c-indexを生存時間データに拡張 47

- ▶ 生存時間そのもの; overall C
 - ▶生存時間が短い(予後が悪い)人ほど、 予測変数が大きな値であればconcordant
 - ▶検討する時間の範囲を設けてもよい; dynamic C
- ▶ Uno's cが標準的

Uno H, et al. Stat Med. 2011. 1105-1117.

DLBCL予測モデル研究

48

	PFS		os	
	c-index	RBSR	c-index	RBSR
R-IPI	0.668	0.122	0.642	0.135
NCCN-IPI	0.749	0.172	0.736	0.251
提案スコア(4段階)	0.703	0.183	0.740	0.305
元の0-5点スコア	0.711	0.215	0.754	0.356

RBSR:相対Brierスコア減少

▶提案スコアが従来スコアより 概ね性能がよいことを示した

47 48

練習①

40

▶JMPデータを用いて、 ROC曲線を描いてみよう

まとめ

50

- ▶因果モデル
 - ▶変数間の因果関係を仮定して、 適切な条件付けを考える
- ▶予測モデル
 - ▶Overfittingを防ぎながら 予測性能のよいモデルを選択
- ▶ROC曲線
 - ▶古典的に使われる判別性能の評価方法