2019/11/20 確率過程とデータ解析

予後予測モデルの構築

北海道大学 医学統計学 横田 勲

今日の内容

2

- ▶Time-to-eventアウトカム・生存時間解析
- ▶予後予測モデルの構築
- ▶予後予測モデルの性能評価
- ▶動的予測

Time-to-event アウトカム

- ▶連続量、カテゴリカルのほか、 医学研究でよく登場するアウトカム
- ▶ あらかじめ定義した「イベント」が 起こるまでの時間
 - ▶死亡、再発、入院、ある基準の達成、など
 - ▶at risk: まだイベントを起こしていない状態

打ち切りのあるデータ

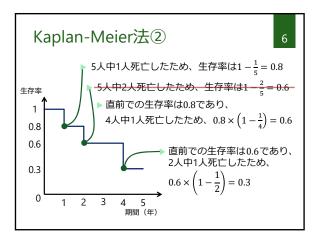
1

- ▶ある時点までイベントを起こしていない
- ▶その先で起こるはずのイベントの 正確な時点が分からない
 - ▶脱落や研究終了等による
- ▶適切に考慮する解析方法が生存時間解析
 - ▶単に除外すると有病率を過大評価しがち
 - ▶イベントなしとすると有病率を過小評価
 - ▶無情報な打ち切りの仮定

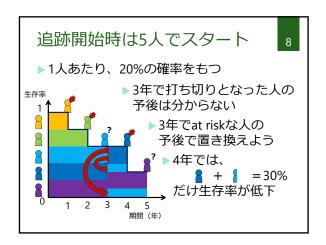
Kaplan-Meier法①

- ▶直前までat riskである人について、 イベントを起こさなかった確率を乗じる
 - ▶生存例は、それまでの間、常に生存してきた
- ▶以下のデータセットを想定

イベント発生時点(年)	内容
1	死亡(イベント)
2	死亡(イベント)
3	脱落(打ち切り)
4	死亡(イベント)
5	研究終了(打ち切り)



打ち切り例の扱い ▶3年で打ち切りとなった対象者 ▶1年、2年での生存率を計算する際には、 at riskであった人として解析に寄与 ▶4年、5年での生存率計算では分母に入らず ▶生存率の計算自体には反映されている



無情報な打ち切り noninformative censoring

▶ Kaplan-Meier法、ログランク検定、 Cox回帰で置かれる仮定

- ▶ランダムな打ち切り、とも
- ▶打ち切りとイベント発生が無関係
 - ▶研究終了時の生存
 - ▶偶然の事故による追跡不能
- ▶打ち切り例の予後を、 at risk例で置き換えるため

解析の目的

10

- ▶ランダム化臨床試験
- ▶ログランク検定:生存曲線が群間で異なるか
- ▶Cox回帰モデル;治療効果の大きさを評価
- ▶ 予測モデルの構築
 - ▶イベントの発生しやすさをモデル化
 - ▶ロジスティックモデル ; 特定の時点における発生有無に注目
 - ▶作ったモデルの予測性能を評価

予測モデル構築の流れ 対象集団 性能評価 アウトカム 予測 光モデル モデル 妥当性検証 の構築 最終的な 予測因子 提示方法の 決定

Kobayashi T, et al. Blood Cancer J. 2016. e383

DLBCLの新規予後予測モデル

- ▶びまん性大細胞型B細胞リンパ腫
- ▶全生存予後を予測したい
- ▶臨床で簡単に利用できるスコアを作りたい
 - ▶年齢、血清LDH、Ann Arborステージ、 ECOG-Performance Status、血清CRP、 低アルブミン血症、 節外(骨髄、骨、皮膚、肺/胸膜)病変
 - ▶変数選択により、予測に用いる因子を決定

ハザード

▶ ハザード関数*λ(t)*

\ザード関数
$$\lambda(t)$$

$$\lambda(t) = \lim_{\Delta t \to 0} \frac{\Pr(t \le T < t + \Delta t | T \ge t)}{\Delta t}$$

▶ tまではat riskであるものの($T \ge t$) その直後t + Δtまでにイベント発生する確率

Cox比例ハザードモデルを利用

- ightharpoonup 八ザード $\lambda(t)$ に対する回帰分析 $\lambda(t) = \lambda_0(t) \exp(x^{\mathsf{T}}\beta)$
 - ▶パラメータは $\lambda_0(t)$ と β
- ▶セミパラメトリックモデル
 - ▶尤度関数のにβに関する部分だけ最大化
 - $\lambda_0(t)$ は $\hat{\beta}$ を差し込んでノンパラ推定
 - ▶計数過程により漸近性質が正当化

変数選択

16

- ▶回帰分析において、複数の因子候補から、 関連の強そうなものだけに絞る方法
 - ▶予測モデルをシンプルにするためには便利
- ▶目的やデータの特徴に応じた使い分け
 - ▶変数増加法 forward
 - ▶変数減少法 backward
 - ▶ステップワイズ法 stepwise
 - ▶LASSO法、elastic net法

ランダム分割

- ▶ 465例のデータ
 - ▶323例(70%)をトレーニングコホート
 - ▶142例(30%)をバリデーションコホート
- ▶ トレーニングコホートで予測モデルを構築
- ▶バリデーションコホートで 他の予測モデルとの性能を比較
 - ▶モデル構築に用いていないデータであるため、 公平な性能比較を行えるだろう

最終モデル

18

▶変数減少ステップワイズ法を利用

因子	ハザード比	95%信頼区間	回帰係数	スコア
$LDH \le 1 \times ULN$	1	-	0	
$LDH > 1 \times ULN, \leq 3 \times ULN$	2.47	1.20-5.08	0.91	1点
LDH > 3×ULN	3.68	1.57-8.66	1.31	2点
ECOG-PS ≥ 2	2.50	1.40-4.45	0.91	1点
ALB < 3.5mg/dL	2.52	1.36-4.69	0.93	1点
特定部位への節外病変	1.71	1.03-2.84	0.54	1点

▶合計点を基にさらにリスク分類

合計点	0点	1-2点	3点	4-5点
リスク分類	低	低中間	高中間	高

各コホートでのリスク分類

19

トレーニング

バリデーション

予測性能指標による評価

20

- ▶予後の悪い対象者を特定するための 予測モデルがどれだけ有用かを知りたい
- ▶他の予測モデルと比較したい
- ▶予測モデルを構築する上で、 overfittingを避けたい
 - ▶ノイズまでモデルをあてはめてしまい、 将来の対象者への予測性能が悪くなること

ところで「予測性能がよい」とはどういうこと?

生存時間解析における予測指標

21

- ▶すべて二値の予測指標を基に拡張
 - ▶ある程度、研究が進んだと感じるもの
 - ▶Brierスコア (予測誤差)
 - ▶C-index(判別能力)
 - ▶予測確率をw年生存率で置き換え、
 - 二値の議論をそのまま適用するもの
 - ▶Net Benefit (臨床的有用性)
 - ▶ Calibration plot (較正)
 - ▶ Net Reclassification Improvement (再分類)

Notation

22

- ▶二値アウトカム D(= 0,1)
 - ▶イベント発生をD = 1、未発生をD = 0
- ▶生存時間アウトカム T
 - ▶イベント発生の時点、短いほど予後が悪い
 - ▶観察イベント/打ち切り時点 T̃
 - トイベント有無の指示変数 $\delta = I(\tilde{T} = T)$
- ▶予測変数(マーカー) M
 - ▶Mが大きいほど、予後が悪いという関係

Brierスコア

23

- ▶2値アウトカムの偏差平方
 - ▶連続量アウトカムでは、 Mean Squared Errorとしておなじみ
- ▶期待Brierスコアの上限
 - ▶無情報(切片だけ)モデル $\{1 S(t)\}\{0 S(t)\}^2 + S(t)\{1 S(t)\}^2$

/ イベント発生確率

イベント未発生確率

イベント発生例の Brierスコア イベント未発生例の Brierスコア

Graf E, et al. Stat Med. 1999. 2529-2545.

期待Brierスコアの範囲

24

- ▶上限は *S*(t){1 *S*(t)}
 - ▶最大でも0.25 (S(t) = 0.5 のとき)
- ▶下限は予測したい対象者の真のモデルを 特定できた時
 - ▶特定できたかは実際のデータからは不明
 - ▶予測したい対象者が真のモデルS(t|M)に従う

 $\frac{S(t|M)\{1 - S(t|M)\}}{\{\hat{S}(t|M) - S(t|M)\}^2}$

, 真のバラツキ (期待値の下限)

モデル誤差 (今はゼロ)

平均Brierスコアの数値例

25

▶2人死亡、2人生存という仮想例

▶無情報モデル

	生存/死亡	予測確率	Brierスコア
1	死亡	0.5	$(1-0.5)^2=0.25$
2	死亡	0.5	$(1-0.5)^2=0.25$
3	生存	0.5	$(0-0.5)^2=0.25$
1	生存	0.5	$(0 - 0.5)^2 - 0.25$

平均Brierスコア

▶予測モデル

ID	生存/死亡	予測確率	Brierスコア
1	死亡	0.9	$(1-0.9)^2=0.01$
2	死亡	0.6	$(1-0.6)^2 = 0.16$
3	生存	0.3	$(0-0.3)^2=0.09$
1	生存	0.2	$(0 - 0.2)^2 - 0.04$

平均Brierスコア 0.075

相対Brierスコア減少

26

- ▶期待Brierスコアのとりうる範囲は0から0.25
 - ▶しかも0に近いほど「予測性能がよい」
 - ▶集団全体の生存確率によって、上限が変化
- ▶無情報モデルに対する、予測モデルでの 期待Brierスコアを小さくした割合
 - ▶0から1をとり、1に近いほど「予測性能がよい」

Brier無情報モデル - Brier予測モデル ___ Brier_{無情報モデル}

打ち切りを含むデータでの推定

IPCW法の利用

28

- ▶対象者はいずれか3パターン
- 1. $I(\widetilde{T}_i > t)$ (tでイベント未発生)
- 2. $I(\tilde{T}_i \leq t)$ かつ $\delta_i = 1$ (tでイベント発生)
- $I(\widetilde{T}_i \leq t)$ かつ $\delta_i = 0$ (tでの状態不明)
- ▶時点tにて打ち切りがない確率 G(t)
 - ▶例えばKaplan-Meier法で推定
- ▶パターン3のBrierスコアが計算不能
 - ▶パターン1,2のBrierスコアを 打ち切られない確率の逆数で膨らませる

$$\frac{1}{n} \Biggl[\sum_{i} \frac{1}{\hat{G}(t)} \bigl\{ 0 - \hat{S}(t|M_{i}) \bigr\}^{2} + \sum_{i} \frac{1}{\hat{G}(\tilde{t}_{i})} \bigl\{ 1 - \hat{S}(t|M_{i}) \bigr\}^{2} \Biggr]$$
全員 パターン1は パターン2は 各イベント時点 \tilde{t}_{i} の 打ち切りなし確率 打ち切りなし確率

判別 discrimination

29

▶ アウトカムの異なる対象者を分ける予測

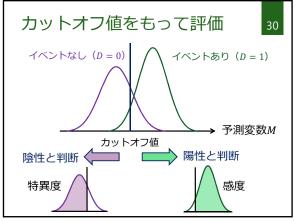
▶連続変数Mを用いて、

二値アウトカムD(=0,1)を診断

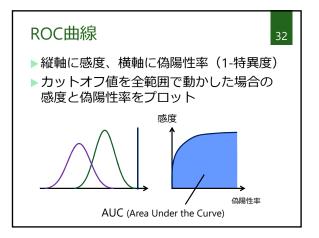
▶感度: $Pr(M > c \mid D = 1)$

▶特異度: $Pr(M < c \mid D = 0)$

▶ 偽陽性率:1-特異度、 $Pr(M > c \mid D = 0)$



感度と特異度はトレードオフ イベントなし (D = 0) イベントあり (D = 1) ・ 感度を上げれば、特異度は下がる ・ 特異度を上げれば、感度は下がる



(ROC-)AUC

33

- ▶ ROC曲線の要約指標
 - ▶判別能力を表す指標として解釈
- ▶ AUC自体はモデルに依らずに計算される
 - ▶ AUC=0.5であれば、no discriminative ability
 - ▶AUCが1に近づくほど、判別能力がよい
 - ▶絶対値的な解釈は困難

AUCを代数的に表現

34

- M_1 はM|D=1から、 M_0 はM|D=0から 独立にサンプリング
 - n_0, n_1 はそれぞれD = 0, D = 1の人数

$$(n_0 n_1)^{-1} \sum_{i=1}^{n_0} \sum_{j=1}^{n_1} \{ I(m_{1i} > m_{0j}) + 0.5I(m_{1i} = m_{0j}) \}$$

- ▶イベント有無と予測変数の
 - ▶大小関係が一致していれば1点
 - ▶大小関係が一致していなければ0点
 - ▶値が等しければ0.5点(引き分け)

C (concordance) index

35

- ▶アウトカムと予測変数の大小関係が 一致した (concordantであった) 割合
 - ▶Kendall's τ、Goodman-Kruskal's γ、 Somer's Dの拡張ともみなせる
 - ▶二値アウトカムの場合、ROC-AUCと一致

Harrell FE, et al. JAMA. 1982. 2543-2546. Harrell FE, et al. Stat Med. 1996. 361-387.

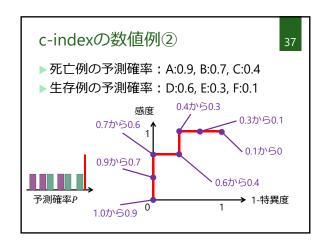
c-indexの数値例①

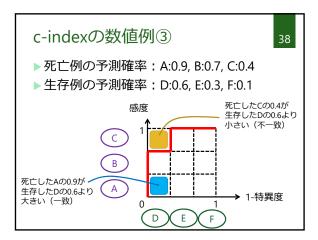
36

▶ 死亡例の予測確率: A:0.9, B:0.7, C:0.4 ▶ 生存例の予測確率: D:0.6, E:0.3, F:0.1

▶総当たり表

			生存例		
		0.6	0.3	0.1	
	0.4	×	0	0	
死亡例	0.7	\circ	0	0	c-index
	0.9	\circ	\circ	0	8/9=0.8
		O · -	- 致 ×・	不一致	





生存時間解析のc-index

39

- ▶生存時間の短長関係と死亡確率の高低が そろえば一致
- ▶生存時間が長いのに死亡確率が高い場合は 不一致
- ▶打ち切りを考慮した、Uno's c-indexを利用 Uno H, et al. Stat Med. 2011. 1105-1117.

DLBCL予測モデル研究

40

	PFS		os	
	c-index	RBSR	c-index	RBSR
R-IPI	0.668	0.122	0.642	0.135
NCCN-IPI	0.749	0.172	0.736	0.251
提案スコア(4段階)	0.703	0.183	0.740	0.305
元の0-5点スコア	0.711	0.215	0.754	0.356

RBSR:相対Brierスコア減少

▶提案スコアが従来スコアより 概ね性能がよいことを示した

治療途中における予測

11

- ▶ ある時点sまで生存した下での条件付き推測
 - ▶ 例) 診断後2年生存した対象者の4年後の死亡確率
- ▶動的予測 (dynamic prediction)
 - s = 0にて通常のw年生存割合と同様

 $\Pr\{X \in (s, s + w] \mid X > s\}$

X:イベント時点を表す確率変数

経時データZ(t)の利用

42

- ▶予測開始時点sまでに観察された 患者の経過をせっかくなので取り入れたい
- ▶ 時間依存性共変量Coxモデル
 - ▶対象者自身の健康状態を表す変数は使えない
 - ▶Z(t)が観察されたということは、 対象者が生存していることが確定
 - ▶ハザードλとの対応が不成立

 $\Pr\{T > t \mid Z(t)\} \neq \exp\left[-\int_{0}^{t} \lambda \{u \mid Z(u)\} du\right]$

ランドマークモデル

43

- ▶ ランドマーク時点 s における at risk例で条件付け
- 時点 s までに得られた情報を利用
- ▶単一の生存時間である場合

(vanHouwelingen 2007, Scand Stat Theory Appl.)

 $\lambda(t|s, Z(t)) = \lambda_0(t|s) \exp\{Z(s)^{\mathsf{T}}\beta(s)\}$

►Z(s)はこのモデルにおいて ベースライン共変量と同等

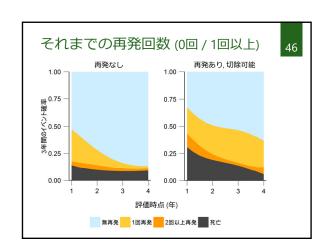
多変量生存時間に拡張

44

Yokota I, Matsuyama Y. BMC Med Res Methodol. 2019.

- ▶ 大腸がん肝転移追跡例データ
 - ▶東京大学医学部附属病院肝胆膵外科にて 大腸がん肝転移の先行肝切除を受けた336名
 - ▶ 1996年1月~2010年12月
 - ▶補助化学療法の行われなかった263名を解析対象

切除不能再発が起こっていない対象者 45 ▶3年後に以下のいずれにあるかを予測 ▶前回切除時の腫瘍情報も利用可能 ▶初回肝切除後の再発回数 (0回 / 1回以上) ▶腫瘍個数 (単発 / 多発) 予測開始時点 予測開始時点から3年後 無再発 ▶ 無再発 初回肝切除時の腫瘍情報 1回再発 再発あり,切除可能 → 2回以上再発 前回再発時の腫瘍情報 死亡



おわりに

17

- ▶予後予測モデルの構築と 予測性能のいくつかの側面を表す指標
 - ▶ Brier score
 - ▶ ROC-AUC, c-index
- ▶動的予測による経時データの組入

医学統計学?

48

- https://biostat-hokudai.jp/
- yokotai@pop.med.hokudai.ac.jp

へ気軽にご連絡ください